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#1#1

Electrical conductivity as a function of 
filler orientation and filler aspect ratio.

Fangming Du (UPenn PhD 2005, GE Lighting)
Lai-Ching Chou (UPenn MS 2007)
Sadie White (UPenn)

Jack Fischer (UPenn)
Brian Didonna (UCLA)



Percolation and Electrical Conductivity

www.cs.colby.edu/.../Images/percolation.gif
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Percolation – filler particles form a cluster of particles that span 
the macroscopic sample.

Percolation dominates electrical conductivity  in polymer 
nanocomposites when 

(1) the interfacial resistance between fillers is small and
(2) the conductivity of the filler is significantly higher than 

the matrix polymer.



Methods for Controlling Electrical Methods for Controlling Electrical 
Conductivity in Nanotube CompositesConductivity in Nanotube Composites

1. Loading

2. Aspect Ratio

3. Orientation

– Filler is well-dispersed by coagulation method

– SWNT, MWNT, carbon nanofiber (CNF) in PMMA

– Simulation 

4. Spatial Distribution and Disperion

– Coated particle process (CPP)

– Continuous, cellular SWNT structure in PS



Electrical Conductivity:  SWNT Concentration

100 sticks, isotropic, conducting

50 sticks, isotropic, insulating
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SWNT/PMMA Composites
Shear Storage ModulusShear Storage Modulus
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Du, et al. Macromolecules, 2004.
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Effect of nanotube 
concentration
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Kashiwagi, et al. Polymer, 2005.



Electrical Conductivity:  Aspect Ratio

L.-C. Chou, unpublished results
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Electrical Conductivity:  Aspect Ratio

σ~ (w-wc)βc

Aspect ratio (L/D) ↑; wc ↓

Less effect at L/D > 40 
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Melt Fiber Spinning
Extensional Flow to Align SWNT

Haggenmueller, et al., 
Chem. Phys. Lett. 330 (2000)

1. hole diameter of spinneret
2. piston velocity
3. rotating speed of windup drum

Control SWNT alignment in composite with…



X-Ray Analysis of Nanotube Orientation

Scattering: 
• Form factor scattering due 
to inherit  shape of SWNT. 
Strong.

• Bragg diffraction due to 
hexagonal packing in SWNT 
bundles.  Weak.

Azimuthal Distribution:
• Anisotropic dependence of 
scattering indicates SWNT 
orientation.

• Quantify distribution by 
fitting Lorenzian to azimuthal 
distribution and reporting the 
FWHM.
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Electrical Conductivity:  SWNT Orientation

100 sticks, aligned (θ=5°), insulting

Filler 
orientation
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SWNT Loading Effects on Orientation Percolation
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MWNT/PMMA Composites:  
Orientation
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#1#1
Electrical conductivity as a function of Electrical conductivity as a function of 
filler orientation and filler aspect ratiofiller orientation and filler aspect ratio..

• Electrical conductivity in nanocomposites exhibits a 
percolation threshold with respect to loading and 
orientation, where the transition from aligned to isotropic 
produces a dramatic increase in conductivity.

• The effect of aspect ratio on electrical conductivity is 
greatest below L/D ~ 50.

F. Du, J. E. Fischer, K. I. Winey*, J. Polym. Sci.:  Polym. Phys., 41, 3333-3338, 2003.

F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, K. I. Winey∗, Macromolecules, 37, 9048-9055, 2004.

F. Du, J. E. Fischer, K. I. Winey*, Rapid Communication in Physical Review B, 72, 121404(R)-4, 2005.

Funded by DURIP w/ Rice, NSF-MRSEC



#2#2

Polyethylene morphology in 
the presence of SWNT.

Reto Haggenmueller (UPenn PhD 2005, MEI Charlton, Inc.)
Csaba Guthy (UPenn PhD 2007)
Jack Fischer (UPenn)
Leonard Yowell (NASA JSC)



SWNT and PE Alignment

Fiber spinning and 
hot drawing

Melting and 
recrystallizing

Type I
Isotropic PE

Isotropic SWNT

Type II
Aligned PE

Aligned SWNT

Type III
Aligned SWNT
Isotropic PE

Hot press above 
Tm (131°C) of PE



Dissolve PE (20 mg/ml) in 1,2,4-
Trichlorobenzene at 115°C

Sonicate HiPco at RT in 
Trichlorobenzene to disperse 
SWNT, 0.2-0.3 mg/ml

Sonicate 20 min, 95 ° C

1 – 30 wt% SWNT

Lower T to coagulate PE

Melt-mixing
10 wt% tubes@rice

Hot-coagulation
20 wt% HiPCO

Hot Coagulation of PE-SWNT Composites



SEM of Fracture Surface

NASA SWNT Dispersion in PE

LDPE LDPE - 30 wt% SWNT



Isothermal Crystallization
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Haggenmueller, et. al., Macromolecules, 2006.

HDPE

0.25 wt% SWNT 
in HDPE

Transmission optical microscopy with crossed polarizers.



WAXS - HDPE

20 m/min 40 60 80 100

WAXS – 1 wt% SWNT - HDPE

Wind-up Speed
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Hot Coagulation
Melt fiber spinning

(Extrude 2 mm/min)

TYPE II
Aligned HDPE 
Aligned SWNT

Haggenmueller, et. al., Macromolecules, 2006.

Melt Fiber Spinning



WAXS - HDPE

20 m/min 40 60 80 100
Wind-up Speed

20 m/min 40 60 80 100
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Melt Fiber Spinning



PE orientation:
Before: FWHM 45°

fc = 0.388
After: Isotropic 

PE orientation:
Before: FWHM 12°

fc = 0.715
After: FWHM 35°

fc = 0.36

SWNT orientation:
Before: FWHM 4.5°
After: FWHM 44°

HDPE HDPE recrystallized

1 wt% SWNT - HDPE 1 wt% recrystallized

Recrystallize
Fibers

Melting and 
recrystallizing

Type III
Aligned SWNT
Isotropic PE



Differentiate SWNT and PE Alignment

Fiber spinning and 
hot drawing

Melting and 
recrystallizing

Type I
Isotropic PE

Isotropic SWNT

Type II
Aligned PE

Aligned SWNT

Type III
Aligned SWNT
Isotropic PE

Hot press above 
Tm (131°C) of PE

x

z

y

10 mm

5 mm

1 mm

1.8 mm

SWNT/PE Fibers
embedded in epoxy

Measure 
Thermal 
Conductivity
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#2#2
Polyethylene morphology in  the presence of SWNT.Polyethylene morphology in  the presence of SWNT.

• Single walled carbon nanotubes nucleate the 
crystallization of PE and template the growth of 
PE lamellae perpendicular to the SWNTs.

• Thermal conductivity of PE increaeses with the 
addition of SWNT, particularly when the SWNT 
and PE are aligned.

R. Haggenmueller, J. E. Fischer, K. I. Winey*, Macromolecules, 39, 2964-2971, 2006.

R. Haggenmueller, C. Guthy, J. R. Lukes, J. E. Fischer, K. I. Winey*, Macromolecules, 40, 
2417-2421, 2007.

Funded by ONR
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Controlling mechanical properties by 
tuning the polymer / filler interface.

Minfang Mu (UPenn)
M. Moniruzzaman (UPenn, postdoc)
Ed Billips (Rice University)



WhatWhat’’s different about s different about 
nanocompositesnanocomposites? ? 
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“Polymer Nanocomposites.” Winey and 
Vaia, MRS Bulletin, to appear in April 2007.

t - thickness of the interfacial volume, that is 
the thickness of the polymer matrix perturbed 
by the filler particle, ~ 1 - 10nm.

δ - size of particle relative to t and as δ
increases the filler particle decreases in size.

The volume of the interfacial region 
exceeds that of the particle volume as 
the filler become nanoscale.



Interfacial In Situ Polycondensation of SWNT/nylon

H2O + diamine

stirring

SWNT + 
sebacoyl chloride 
in dichlorbenzene

Haggenmueller et al. Polymer 2006, 47, 2381-2388.
Winey et al  U.S. Patent 2006,  US  7,148,269.



Functionalized SWNT and Nylon 6, 10 
Interfacial In Situ Polycondensation 

Ed Billups,  Rice University
Moniruzzaman, et. al., Nano Letters 2007.
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N = 4, 9
~ 1 acid chloride per 32-35 carbon atoms
Two phases:  water, dichlorobenzene

Raman Spectroscopy – covalent bond with SWNT
FTIR Spectroscopy – acid chloride combines with diamine
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Mechanical Properties of the 
Composite Fibers (1 wt% filler)

(b)

• Composite fibers have higher Young’s modulus and strength than nylon 6,10.

• C4-SWNT and C9-SWNT composite fibers have significantly improved strain at 
break compared to SWNT composite fibers.  

(a)

SWNT/Nylon

C4-SWNT/Nylon

C9-SWNT/Nylon

Nylon 6,10

Nylon 6,10SWNT/Nylon

C9-SWNT/ 
Nylon

C4-SWNT/Nylon

Moniruzzaman, et. al., Nano Letters 2007.



Nylon 6, 10 with SWNT 

Moniruzzaman, et. al., Nano Letters 2007.

368 ± 7290 ± 6262 ± 5440 ± 7Strain at break (%)
136%106%-14%% change

417 ± 24365 ± 21152 ± 21177 ± 18Toughness (MPa)
163%149%17%% change

177 ± 6168 ± 779 ± 767.4 ± 6Tensile strength (MPa)
132%162%38%% change

1955 ± 732309 ± 781217 ± 86879 ± 65Young’s modulus (MPa)

C9-SWNTC4-SWNTSWNTNylon 
6,101 wt% filler



Molecular Weight Effect

Both sets of composites exhibit comparable 
SWNT distribution (Raman mapping) and 
SWNT orientation (x-ray scattering).

Coagulation method
Melt fiber spinning

Mu, et. al., J Phys. Chem B, in press.



Molecular Weight Effect

85.59.190.2217.7 wt% CNF in 
100k PMMA

192.73.330.226.4 wt% CNF in 
100k PMMA

57.86.660.902.0 wt% SWNT in 
25k PMMA

85.53.330.901.0 wt% SWNT in 
25k PMMA

57.76.661.792.0 wt% SWNT in 
100k PMMA

85.53.331.791.0 wt% SWNT in 
100k PMMA

[a-D] (nm)α(μm-1)2Rg/Dcomposite

2Rg/D:  relative filler size
α:  specific interfacial area
(a-D):  filler-filler separation Mu, et. al., J Phys. Chem B, in press.



#3#3
Controlling mechanical properties by tuning Controlling mechanical properties by tuning 

the polymer  / filler interface.the polymer  / filler interface.

• In nylon 6,10, an alkane spacer of 4 or 9 carbons 
significantly improves modulus, strength and 
toughness relative to unfunctionalized SWNT.

• In amorphous polymers, a relative size (2Rg/D) 
greater than one improves modulus.

M. Moniruzzaman, J. Chattopadhyay, W. E. Billups, K. I. Winey*, NanoLetters, 7, 1178, 2007.

M. Mu, K. I. Winey*, J. Phys. Chem. B, in press.

Funded by NSF MRSEC, NASA, Nanotechnology Institute (PA)


